International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 151-160
http://rewriting.loria.fr/rta/

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR
PROGRAM ANALYSIS

MARK HILLS! AND GRIGORE ROSU?

! Centrum Wiskunde & Informatica
Science Park 123, 1098 XG Amsterdam, The Netherlands
E-mail address: Mark.Hills@cwi.nl
URL: http://wuw.cwi.nl

2 Department of Computer Science, University of Illinois at Urbana-Champaign
201 N. Goodwin Av., Urbana, IL 61801, USA
E-mail address: grosu@cs.uiuc.edu
URL: http://fsl.cs.uiuc.edu

ABSTRACT. The K framework, based on rewriting logic semantics, provides a powerful
logic for defining the semantics of programming languages. While most work in this
area has focused on defining an evaluation semantics for a language, it is also possible
to define an abstract semantics that can be used for program analysis. Using the SILF
language (Hills, Serbanuta and Rosu, 2007), this paper describes one technique for defining
such a semantics: policy frameworks. In policy frameworks, an analysis-generic, modular
framework is first defined for a language. Individual analyses, called policies, are then
defined as extensions of this framework, with each policy defining analysis-specific semantic
rules and an annotation language which, in combination with support in the language front-
end, allows users to annotate program types and functions with information used during
program analysis. Standard term rewriting techniques are used to analyze programs by
evaluating them in the policy semantics.

1. Introduction

Programs compute by manipulating different kinds of explicit data made available by the
language, like integers, objects, lists, functions, or strings. Some of this data may also have
implicit properties, important to the correctness of the program but impossible to represent
directly in the language. For example, many languages have no way to indicate that a
variable has been (or must already be) explicitly initialized, or that a reference or pointer
never contains null. Some languages also leave the types of values and variables implicit,
providing no syntax to indicate that certain types are expected at given points in the

1998 ACM Subject Classification: F.3.2 [Semantics of Programming Languages|: Program Analysis.

Key words and phrases: K, rewriting logic semantics, program analysis.

Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-0720512, by NASA contract
NNLO8AA23C, by the Microsoft/Intel funded Universal Parallel Computing Research Center at UIUC, and
by several Microsoft gifts.

{RTA>
M i © M. Hills and G. Rosu
\/ Creative Commons Non-Commercial No Derivatives License
Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany

Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.151

152 M. HILLS AND G. ROSU

program. Domain-specific examples of implicit properties are also common. One compelling
example, commonly used in scientific computing applications, is units of measurement [nis],
where program values and variables are assumed to have specific units (meters, kilograms,
seconds, etc) at specific points in the program or along specific execution paths.

These implicit properties of program data give rise to implicit policies, or rules about
how this information can be manipulated. For instance, one may require that variables be
initialized on all paths before being read, or that only non-null pointers can be assigned to
other non-null pointers. Languages with implicit types generally still place type restrictions
on operations such as arithmetic, where only values representing numbers can be used.
Programs that use units of measurement must adhere to a number of rules, such as requiring
two operands in an addition or comparison operation to have the same unit, or treating the
result of a multiplication operation as having a unit equal to the product of the units of the
operands (e.g., given meter and second, the resulting unit would be meter second).

Because these properties are hard to check by hand, a number of techniques have
been developed to allow implicit properties to be either inferred or stated explicitly in
a program. In this paper we focus on the use of annotations, either given by “decorating’
program constructs with type-like information (type annotations) or by including additional
information in special language constructs or inside comments (code annotations). Many
systems that use annotations are designed with specific analysis domains in mind; those that
are more general often support either type or code annotations, but not both, or provide
limited capabilities to adapt to new domains. In this paper we present a solution designed to
overcome these limitations: policy frameworks. Policy frameworks support the use of type
and code annotations through an augmented language front-end, with each analysis policy
defining its own annotation language, specialized to the domain under analysis. Program
analysis is then based on program evaluation in an abstract rewriting logic semantics of the
programming and annotation languages. Principles developed during work on the rewriting
logic semantics project are used to ensure that the semantics is modular, allowing a large
core of the framework to be reused across policies.

The remainder of this paper is organized as follows. As background, Section 2 provides
an introduction to rewriting logic semantics and K, a rewrite-based formalism for language
semantics. Section 3 then presents a policy framework for the SILF programming language
along with two policies. SILF has been chosen because it is complex enough to show many
common features of programming languages, but simple enough to allow policy frameworks
to be understood in isolation from the language, something that is more difficult for lan-
guages such as C. Finally, Section 4 discusses related work, while Section 5 concludes.

)

2. Rewriting Logic Semantics and K

Equational logic has long been seen as a viable formalism for defining the semantics
of sequential programming languages [Gog77, Ber89, Gog96]. Rewriting logic extends this
by providing a formalism for defining the semantics of nondeterministic and concurrent
languages, leading to an area of research known as rewriting logic semantics [Mes04, Mes07].
One specific style of rewriting logic semantics is computation-based rewriting logic semantics
[Mes07], hereafter referred to as RLS.

RLS defines the semantics of a programming language as a rewrite theory. Terms
formed over the signature of the theory are used to represent the program configuration,
made up of the current program and auxiliary entities such as environments, stores, etc.

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 153

Rules and equations are then used to transition between configurations, with equations
used to define sequential language features and rules used to define nondeterministic and
concurrent language features. The configuration is defined as a nested multiset: individual
parts of the configuration (configuration items) can be repeated and can also be nested inside
other items, allowing the flexibility to represent language features such as multiple threads
(repetition), each with local state (nesting). Multiset matching is used so that configuration
items do not need to be named in a specific order in equations and rules; matching also
allows unused parts of the configuration around the matched subterm to be elided, allowing
equations and rules to remain unchanged even when the surrounding configuration changes.

One often-used configuration item, k, holds the current computation. Computations in
k are lists; each item in the list is referred to as a computation item, each of which represents
an individual task or piece of information. The head of the list can be seen as the “next”
task, with the tail containing tasks that will be computed later. Instead of using “,” as the
list separator, an arrow, written in text as —> and mathematically as ~, is used, hopefully
providing some added intuition: do this (ciq), then that (cia), then that (cis), etc, until
finished (no items are left):

Cl1 M Clo M CL3 My ... NN Clp,

The equations and rules used to define the semantics often break up computations into
smaller pieces, which are then put at the head of the computation to indicate that they
need to be computed first before the overall computation can continue. Since computations
in RLS are first-order terms, they can also be manipulated as a whole, such as by saving
the current computation for evaluation later (such as for call/cc or coroutines).

Figure 1 shows eq stmt(E ;) = exp(E) -> discard .
several examples of eq exp(X) = lookup(X) .
equations. The first eq stmt(X <- E ;) = exp(E) -> assignTo(X) .
provides the seman- eq k(val(V) -> assignTo(X) -> K) env([X,L] Env) mem([L,V’] Mem) =

tics for the state- k(K) env([X,L] Env) mem([L,V] Mem) .
ment E ;, saying .) . .
that this is defined Figure 1: RLS Semantics with Equations

as the result of evaluating the expression E and then discarding the result. Note that
exp(E) is placed “on top of” discard in the computation, meaning that it will be evalu-
ated first, with the expectation that it will produce a value. The second equation provides
a semantics for names used as expressions: X is looked up to retrieve its current value. The
third equation provides the semantics for assignment: E is evaluated, and the resulting
value is assigned to X using assignTo. Finally, the fourth equation defines the semantics
of assignTo. Env and Mem are both multisets of pairs, defined equationally as maps — Env
from names to locations, Mem from locations to values. The equation states that the result
of assigning value V to name X is a configuration where the value V’ held at location L in
Mem — location L is assigned to X by Env — is replaced with the new value V.

K. K [Ros07], based on RLS, provides additional notation for defining the semantics of a
language. K configurations are defined identically to those in RLS, with each configuration
item called a K cell. The cells are given in K rules using an XML-like notation, with an
opening cell “tag”, like (k) and a closing tag like (/k). Rules in K are defined similarly to
rules and equations in RLS, but with a number of notational conveniences. Figure 2 shows
the step-by-step results of a number of individual transformation steps to convert the last
RLS equation in Figure 1 (augmented with support for threads) into a K rule.

154 M. HILLS AND G. ROSU

t)y (k) X + VK (/k){env) (X,L) Env (/env) TS (/t) (mem) (L,V') Mem (/mem) —
(t) (k) K (/k)(env) (X,L) Env (/env) TS (/t) (mem) (L,V) Mem {/mem) (2.1)

(k) X < VK (k) (en) (X,L) Env {/env) (mem) (L, V') Mem (/mem) —
(k) K (/k) (env) (X,L) Env {/env) (mem) (L,V) Mem {(/mem) (2.2)

(kY X «+ VK (/k) (env) (X,L) Env (/env) (mem) (L,.) Mem {(/mem) —
(k) K (/k) (env) (X,L) Env (/env) (mem) (L,V) Mem (/mem) (2.3)

(k) X <« V _.{(/k) (env)... (X,L) ..{(/env) (mem)... (L,.) ...(/mem) —
(k) - ...{/k) (env)... (X,L) ..{/env) (mem)... (L,V) ...{(/mem) (2.4)

(k) X «+ V. ..(/k) {env)... (X,L) ..(/env) (mem)... (L, -) ...(/mem) (2.5)
. Vv

Figure 2: Converting RLS to K

The first step of the transformation is shown in Rule 2.1. The main change in this first
step is the use of the XML-like cell notation and the replacement of val (V) -> assignTo(X)
with X < V. The second step, shown in Rule 2.2, is the removal of the context needed only
for matching the configuration structure. The removal of this context allows the rule to be
more modular, since it is not then tied to a specific configuration, only to the configuration
pieces used directly by the rule. The third transformation step, shown in Rule 2.3, is the
replacement of variables given on the left-hand side of a rule by underscores if they are not
otherwise used (in conditions or on the right-hand side). This is used to replace V' with an
underscore, since it is not used elsewhere in the rule.

Since matching against lists and sets is used quite often, it is also helpful to have special
notation for both lists and sets. In K, this is indicated by using “...”, with a “...” at the
start or end of a cell indicating a list match (“...” at the start indicates that one is matching
the list tail, while “...” at the end indicates that one is matching the head), and “...” at
both ends of the cell indicating a set or multiset match. In the fourth transformation step,
Rule 2.4 shows the transformation of Rule 2.3 to use this notation. Finally, since some of
the information in Rule 2.4 is redundant it can be removed by switching to a special rule
format, where the parts of a term that are changed are underlined, with the changes to the
term then placed below the underlines. The result of applying this fifth transformation to
Rule 2.4 is shown in Rule 2.5. In the k cell, the - is now under X < V', while V is now
under _. Since both the environment and the first element (L) of the pair in mem do not
change, each only needs to be written once.

3. The SILF Policy Framework

SILF, the Simple Imperative Language with Functions, was introduced in earlier work
by the authors [Hil07, Hil09]. Here, we extend the language presented in this earlier work
with a policy framework and with two policies: one for type checking programs in SILF,
using type annotations; and one for checking the unit safety of programs, using type and

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 155

code annotations to indicate the units associated with program variables and values. To give
an idea of the size of the specification, the policy framework is made up of 281 operators
and 284 equations across 49 modules; the type checking policy of 100 equations and 17
operators across 7 modules; and the unit checking policy of 273 equations and 52 operators
across 38 modules !. The SILF Policy Framework is available for download or online use at
the SILF Policy Framework homepage [Hil].

3.1. Adding a Policy Framework to SILF

Adding a policy framework to SILF requires adding a policy-aware front end, a core
abstract language semantics, generic analysis support, and the individual analysis policies.
Since compatibility with existing SILF code is not an issue, to add a policy framework to
SILF annotation support has been added directly to the language, versus (as was done in
the C Policy Framework [Hil08] to maintain compatibility with existing C compilers) adding
support through source comments. In the extended SILF syntax, type annotations are iden-
tifiers with a leading $, like $int or $meter. Type variables are given with similar syntax:
$$, instead of just $, like $$X. Type identifiers and variables are used in standard type
positions, like on variables and formal parameters. Code annotations are given in syntax
extensions for invariants on loops (for both while and for loops), assume and assert state-
ments, and, in function declarations, function contracts with preconditions, postconditions,
and modifies (which identifies the globals changed by a function). The code annotation, an
arbitrary string, is actually parsed by the policy. Each code annotation includes a policy
tag, identifying the policy associated with the annotation language used in the annotation.
This policy tag is just an identifier, and is given before the annotation, like pre(UNITS).
This allows annotations for multiple policies to be present in the program source at once.

The core semantics includes the original SILF abstract syntax, extended with the new
type and code annotation constructs mentioned above; and the configuration (i.e., K cells).
The original dynamic semantics can be viewed as a special policy which ignores the addi-
tional constructs, with evaluation over a concrete, versus abstract, domain. Extensions to
the semantics to support analysis include modules providing: basic logical connectives for
the annotation language; pretty printing capabilities over the abstract syntax for generating
error messages; support for type annotation variables with limited forms of polymorphism;
additional K cells for analysis information; and operators for working with these extensions.
K’s modularity allows new cells to be added without requiring changes to existing rules,
making it easy to extend the state with new analysis information, such as line numbers (cell
currLn), a copy of the environment current at function entry (cell old), and error messages
generated by the analysis (cell log). Many SILF language features are also given a default
generic semantics, with special computation items used to indicate “hooks” whose behavior
is defined by individual policies. For instance, the result of an addition expression is left
up to the individual policy, since a type checking policy would have different correctness
requirements than a units of measurement checking policy.

Figure 3 provides several examples of policy-generic semantics rules. Rule 3.1 is the
generic rule for assignments. To check an assignment, the semantics first evaluates X and E.
The computation item checkAssign then determines, in a policy-specific manner, whether
the value of E can be assigned to X (based, for instance, on the current assigned value

IThis actually defines three progressively more complex policies, with no single policy using all the
operators, equations, or modules defined.

156 M. HILLS AND G. ROSU

(k) X =F ~A{/k) (3.1)
(X, E) ~ checkAssign

(k) X[E]:= E (/K (3.2)
(X,E,E") ~ checkArrayAssign

(k) if E then Dt St else Df Sf fi ...{/k) {env) Env{/env) (3.3)
E ~ checkIfGuard ~~ if (Dt ~ St ~ Env, Df ~ Sf ~ Env)

Figure 3: SILF Abstract Statement Semantics

or any annotations given on the declaration). Rule 3.2 is similar, but also evaluates the
array index expression, and then uses computation item checkArrayAssign to ensure the
assignment meets all requirements for the policy. The final rule shown, Rule 3.3, shows
the generic semantics for a conditional. The conditional guard, E, is evaluated first; the
computation item checkIfGuard will then check the value in a policy-specific manner. The
computations stored as part of the if computation item will then be used to check both the
then and else branches, with each computation handling the declarations and statements
along that branch and restoring the environment to that active at the start of the conditional,
maintaining block scoping.

The most challenging part of the generic semantics deals with handling function calls
and function call sites. During analysis, each function is executed using the policy semantics.
Any preconditions are first assumed correct, with postconditions verified at each function
return. Since checking is static, call sites are modeled using a computation representing
a summary of the called function’s behavior. Any preconditions of the called function
are first checked, using the actual parameter values in place of the formal parameters in
the preconditions; the modifies clauses of this called function are then evaluated, generally
setting any modified globals to policy-specific unknown or random values. Finally any
postconditions on the called function are evaluated, with the results assumed to hold. Full
details of this process can be found with the definition of the framework [Hil].

3.2. Defining A Type Checking Policy for SILF

To define a type checker for SILF as a policy, the first step is to define the analysis
domain for types. The values in this domain are shown in Figure 4. Since this policy only
uses type annotations, no separate code annotation language needs to be given.

The second part of defining the policy is defin- sort BaseType .
ing the analysis-specific semantics for type checking. subsort BaseType < Type .
These rules generally follow the dynamic semantics rules ops $int $bool : -> BaseType .
closely, with the addition that error checking logic has Zi :iii;f.fe :Bz_iiegiz T> Type -
been added to catch errors that, dynamically, led to
stuck states. For instance, Figure 5 shows the original
integer addition rule for the SILF dynamic semantics, Rule 3.4, as well as two typing rules
for addition. The first typing rule, Rule 3.5, indicates the expected scenario: each operand
is of type $int, with the entire operation also of type $int. The second, Rule 3.6, is an
error case; at least one of the types is not $int. To handle this, the policy code generates
an error message (abstracted here as msg) of severity 1 (an error) using issueWarning. It

Figure 4: SILF Types Domain

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 157

i1 +i2 — ¢, if ¢ is the sum of 4; and i (3.4)

($int, $int) ~ plus — $int (3.5)

(k) (t,t") ~ plus L{/k), ift =/= $int or t' =/= $int (3.6)
issue Warning (1, msg) ~ $int

if true then Kt else Kf — Kt (3.7)

$bool ~ if(Kt, Kf) — Kt ~ Kf (3.8)

Figure 5: SILF Type Checking Policy Rules

also returns $int as the result type to prevent a cascade of additional errors being triggered

by this one type error.

Figure 5 also provides a comparison between the
rules for conditionals in the dynamic and the type check-
ing policy semantics. Rule 3.7, part of the dynamic se-
mantics, selects the then (Kt) branch in the case of
a true condition (the similar else branch rule is not
shown). Rule 3.8, part of the policy semantics, makes
sure the condition evaluates to a boolean; after this
check, the then branch and the else branch are both
analyzed. Another rule, not shown, handles the case
where the condition does not evaluate to $bool, using
issueWarning like in Rule 3.6 to issue an error message
and then, like in Rule 3.7, checking both branches of the
conditional. Similar rules are used to define most of the
features of the language.

Figure 6 shows an example of a program with type
errors. Running the type checking policy over the pro-
gram, the following error messages are generated:

function $int f($int x)
begin
return x + 1;

end

function $int main(void)
begin
var $int x;

X =
X @
X

if

fi
if

3;
f(x);
f(x,x);
x then
write 1;

(x < 5) then
write 1;

else

fi
end

write false;

Figure 6: Checking Types

ERROR on line 10: Type failure: too many arguments provided in call to function f.
ERROR on line 11: Type failure: expression x should have type $bool, but has type $int.
ERROR on line 17: Type failure: write expression false has type $bool, expected type $int.

In the first error, function £ expects one parameter but is given two. In the second, the
conditional expression should be a boolean, but instead an integer is provided, and unlike
in languages such as C no automatic coercion is performed. In the final error message, the
expression given to the write statement should be an integer, but is instead a boolean. The
policy pretty printer, part of the generic analysis support defined for the framework (the
basic pretty printer is actually shared between frameworks, but most of the logic is language
specific), is used to generate the error messages, and is extended by the policy to correctly

print the annotations.

158 M. HILLS AND G. ROSU

(u,u) ~ plus — u (3.9)

(k) (u,u') ~ plus (/k), ifu=/=u"and v’ =/= $cons (3.10)
issue Warning (1, msg) ~ $fail

(u,u’) ~ times — u ' (3.11)

V A if(Kt, Kf) — Kt ~ Kf (3.12)

(kY (u,u') ~ checkAssign ...{/k), if u == or u' == $cons (3.13)
(k) (u,u') ~ checkAssign ...(/k), if u=/=u" and u' =/= $cons (3.14)

issue Warning(1, msg)

Figure 7: SILF UNITS Policy Rules

3.3. Defining a Units Policy for SILF

The UNITS policy for SILF is similar to that defined for C in the C Policy Framework
(CPF) [Hil08], and is only presented at a high level here to show the similarity to the rules
for the type checking policy. The complete policy is available for download on the SILF
Policy Framework site [Hil].

A program is considered unit safe if it properly follows a number of unit rules, such
as only adding values with matching units. Figure 7 shows several UNITS rules. The first,
Rule 3.9, is for addition, where, if both units match, the result is the same unit; Rule 3.10 is
an error case for addition, where the units don’t match and the second unit isn’t a constant
(which can be converted to any unit). Rule 3.11 is a rule for multiplication, where the
resulting unit is the product of the operand units. Rules 3.12, 3.13, and 3.14 are rules for
statements. Rule 3.12 handles conditionals, and is similar to Rule 3.8, except there is no
need to check the value computed by the guard — any errors found in the guard expression
will have already been reported, and the guard is not expected to have a specific unit (a
more stringent requirement would be to enforce that the guard has no unit, but that is not
done here). Rules 3.13 and 3.14 then show the regular and error cases for assignment. In
Rule 3.13, the assignment is safe if the value being assigned either has the same unit or is
a constant; in Rule 3.14, this condition does not hold, so an error message is issued.

4. Related Work

Many different tools and techniques have been developed around the use of annotations
for program analysis. The earliest precursor to the work presented here was developed as
a prototype to check the unit safety of programs written in BC [Che03]. JML [Bur03],
the Java Modeling Language, provides support for code annotations, and has been used in
a number of analysis tools, such as tools for runtime and static analysis. Spec# [Bar(05]
extends the C# language with support for code annotations and several type annotations.
Eiffel [Mey88] includes direct language support for code annotations such as preconditions
(require) and postconditions (ensure). None of these systems provide the same extensibility

A REWRITING LOGIC SEMANTICS APPROACH TO MODULAR PROGRAM ANALYSIS 159

of type annotations as seen with both the CPF and the SILF policy framework, while
extensions to the provided code annotation languages (where allowed) are formalized in
first-order logic.

Specifically for C, a number of annotation-based systems have been developed. LCLint
[Eva94], now Splint, uses program annotations to detect potential errors in C programs, and
provides limited abilities to add new annotations by allowing attributes and constraints to be
defined for various C language objects. C-UNITS [Ros03], another conceptual precursor to
the CPF, uses annotations to check unit safety for a limited subset of C, but is not extensible,
offering no clear way to either support other analysis domains or cover unsupported features
of C. Caduceus [Fil04, Fil07] provides an annotation language similar to JML; programs are
verified by transforming them into a simpler language, called Why, which is then further
processed to generate proof tasks for various theorem provers. Frama-C [fra] provides an
extensible analysis framework, with various analyses built in OCaml as “plugins” to the
core Frama-C tool. Frama-C uses the ACSL annotation language [Bau08], which is based
on the annotation language used in Caduceus. To support new concepts they must be
formalized in first-order logic using “logic specifications”, and type annotations are not
supported. Systems targeted at specific domains include VCC [Coh08], for verification of
concurrent C programs, and HAVOC [Cha07], aimed at programs, such as device drivers,
that perform low-level memory manipulation. CQUAL [Fos99] provides support for user-
defined type annotations, referred to as type qualifiers, but cannot natively support some
complex domains like units. It also does not support code annotations, such as function
contracts. The current version of CPF includes new functionality over that discussed in
earlier work [Hil08], including support for type annotations and modifies clauses and more
complete support for heap-allocated values in C.

5. Conclusions

In this paper we introduced policy frameworks, a flexible, modular technique for adding
new analysis policies and annotation languages. We presented an implemented policy frame-
work for SILF, a simple imperative language, along with two examples of existing policies
for SILF, one for types and one for units of measurement. These policies illustrate the
reuse within a policy framework of the policy core, while also sharing some framework
functionality with the CPF, showing that reuse across frameworks is possible as well.

In the future, we plan to extend the same concepts used here to other programming
languages, potentially Java or OCaml. Of special interest is to see if it would be possible to
then extend this technique to multi-language analysis (for instance, to calls from OCaml into
C code). We are also working to relate the abstract semantics developed for analysis more
closely with parallel efforts to develop concrete K semantics of various languages. Finally,
we are investigating integrating current work on policy frameworks with work on Rascal
[K1i09b, Kli09a], a language for source code analysis and transformation which should allow
analysis support to be developed for significant real-world languages.

References

[Bar05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An
Overview. In Proceedings of CASSIS’04, LNCS, vol. 3362, pp. 49-69. Springer, 2005.

160

[Bau08g]
[Ber89]
[Bur03]

[Cha07]

[Che03]
[Cohog]
[Eva9d]
[Fil04]
[Fil07]
[Fos99)]

[fra]
[GogTT7]

[Gog96]
[Hil]

[Hil07]

[Hil0g]
[Hil09]
[K1i09a]

[K1i09b)

[Mes04]
[Mes07]
[Mey88]

[nis]

[Ros03]

[Ros07]

M. HILLS AND G. ROSU

Patrick Baudin, Jean-Christophe Fillidtre, Claude Marché, Benjamin Monate, Yannick Moy, and
Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. 2008.

Jan A. Bergstra, Jan Heering, and Paul Klint. Algebraic Specification. ACM Press, 1989.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. In Proceedings of
FMICS’03, ENTCS, vol. 80, pp. 75-91. 2003.

Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A Reachability
Predicate for Analyzing Low-Level Software. In Proceedings of TACAS’07, LNCS, vol. 4424, pp.
19-33. Springer, 2007.

Feng Chen, Grigore Rosu, and Ram Prasad Venkatesan. Rule-Based Analysis of Dimensional Safety.
In Proceedings of RTA’08, LNCS, vol. 2706, pp. 197-207. Springer, 2003.

Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. A Practical Verification
Methodology for Concurrent Programs, 2008.

David Evans, John V. Guttag, James J. Horning, and Yang Meng Tan. LCLint: A Tool for Using
Specifications to Check Code. In Proceedings of FSE’9/, pp. 87-96. ACM Press, 1994.
Jean-Christophe Fillidtre and Claude Marché. Multi-prover Verification of C Programs. In Proceed-
ings of ICFEM’04, LNCS, vol. 3308, pp. 15-29. Springer, 2004.

Jean-Christophe Fillidtre and Claude Marché. The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program Verification. In Proceedings of CAV’07, LNCS, vol. 4590, pp. 173—-177. Springer, 2007.
Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A Theory of Type Qualifiers. In Pro-
ceedings of PLDI’99, pp. 192-203. ACM Press, 1999.

Frama-C. http://frama-c.cea.fr.

Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse Wright. Initial Algebra Seman-
tics and Continuous Algebras. Journal of the ACM, 24(1):68-95, 1977.

Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. MIT Press,
1996.

Mark Hills and Grigore Rosu. SILF Policy Framework. http://fsl.cs.uiuc.edu/index.php/SILF_
Policy_Framework.

Mark Hills, Traian Florin Serbanuta, and Grigore Rogu. A Rewrite Framework for Language Defi-
nitions and for Generation of Efficient Interpreters. In Proceedings of WRLA 06, ENTCS, vol. 176,
pp- 215-231. Elsevier, 2007.

Mark Hills, Feng Chen, and Grigore Rosu. A Rewriting Logic Approach to Static Checking of Units
of Measurement in C. In Proceedings of RULE’08. Elsevier, 2008. To Appear.

Mark Hills. Memory Representations in Rewriting Logic Semantics Definitions. In Proceedings of
WRLA’08, ENTCS, vol. 238(3), pp. 155-172. Elsevier, 2009.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-Programming with RASCAL. In
Proceedings of GTTSE’09, pp. 185-238. Universidade do Minho, 2009.

Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation. In Proceedings of SCAM’09, vol. 0, pp. 168-177. IEEE
Computer Society, Los Alamitos, CA, USA, 2009.

J. Meseguer and G. Rosu. Rewriting Logic Semantics: From Language Specifications to Formal
Analysis Tools . In Proceedings of IJCAR’04, LNAI, vol. 3097, pp. 1-44. Springer, 2004.

José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theoretical Computer
Science, 373(3):213-237, 2007.

Bertrand Meyer. Eiffel: A Language and Environment for Software Engineering. Journal of Systems
and Software, 8(3):199-246, 1988.

The NIST Reference on Constants, Units, and Uncertainty. http://physics.nist.gov/cuu/Units/.
Grigore Rosu and Feng Chen. Certifying Measurement Unit Safety Policy. In Proceedings
of ASE’03, pp. 304 — 309. IEEE, 2003.

Grigore Rosu. K: A Rewriting-Based Framework for Computations — Preliminary version.
Tech. Rep. Department of Computer Science UTUCDCS-R-2007-2926, University of Illinois
at Urbana-Champaign, 2007.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

